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Perturbation analysis of droplet deformation under electrical double layer forces

S. J. Miklavcic*
Ian Wark Research Institute, University of South Australia, The Levels Campus, SA 5095 Australia

~Received 31 March 1997!

Fluid-liquid interface deformation by electrical double layer surface forces introduces several difficulties for
the accurate interpretation of fluid-drop–particle interaction measurements. We investigate the source of these
difficulties theoretically using a perturbation method. Relevant quantities, such as interface shape and droplet
internal pressure, are expressed in series expansions in a dimensionless parameterM5(n0kBT)/(g/ l ), being
the ratio of electrical double layer forces to surface tension, i.e., an effective double layer Bond number.
Governing equations are truncated to first order inM , and solved for the deformation in droplet shape to
leading order. Analytical and numerical results for the case of neutrally buoyant drops interacting with charged
spherical particles allow for a quantitative examination of the extent of deformation. The case of drops
experiencing finite buoyancy is also formulated in a linear theory, and a method of solution is outlined.
@S1063-651X~98!07901-X#

PACS number~s!: 47.55.Dz, 82.70.Dd, 68.10.2m, 83.50.2v
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INTRODUCTION

The capture of small mineral particles in a heterogene
colloidal dispersion by gas bubbles is the key to succes
mineral flotation@1#. Two problems which arise in this pro
cess of separating specific particles of a mixture us
bubbles are~i! knowing whether a favorable interaction e
ists between the two entities, and~ii ! if not, whether modifi-
cations can be introduced to achieve the desired interac
These issues were recently addressed in some experim
studies of the direct equilibrium interaction between a coll
dal particle and a bubble using an atomic force microsc
~AFM! @2–4#. Unfortunately, a new concern emerged fro
these experiments: the question of whether one can prop
interpret the measured experimental data in the usual form
force-vs-intersurface separation, knowing that at least on
the surfaces—the fluid interface—suffers considerable de
mation under the action of surface forces. In these circu
stances, fluid-liquid deformation implies foremost that o
has no direct knowledge of the instantaneous surface p
tion associated with a given measured force. Second,
measured net force itself is an integral of an unknown
duced surface stress distribution acting on a smooth but
known varying surface. Without doubt these are two ve
important considerations. In short, one of the greatest dr
backs of using the AFM in its current form for this situatio
is that one is essentially working blind. Although efforts a
being made to circumvent the problem, there has yet to
any direct experimental progress with regard to establish
the separation between the two surfaces or the shape o
fluid-liquid interface in situ, as there is with the surfac
forces apparatus@5#.

One suggestion to be considered seriously in the me
time, as a means of deconvoluting the effect of deformat
from the measurements, is to make direct use of theore

*Present address: Department of Science and Engineering,
Campus Norrko¨ping, University of Linköping, S-602 19, Norrko¨p-
ing, Sweden.
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calculations of equilibrium droplet shapes. The equat
governing the interfacial profile is well known. Thus, given
form for the induced surface stress distribution, the sh
function can be evaluated and the extent of deformation
termined. The question we ultimately aim to answer
whether theory can make possible the determination of
intersurface distance during the measurement process
was stressed in previous publications@6,7#, surface deforma-
tion, occurring in colloid dispersions involving immiscibl
fluids, can lead to quite surprising behavior under otherw
well-understood conditions@8#.

In this paper we model the important features of the
teraction between a fluid drop and a colloidal particle as e
in the AFM experimental studies. We focus attention on a
lyzing the change in shape of the fluid drop induced by s
face forces, using regular perturbation theory. The point
departure is the well-established, linear mean-field anal
of the electrical double layer about and between two sph
cal colloidal objects, which we have implemented to co
sider a range of surface potentials~up to 75 mV! and particle
and droplet sizes~from 100 nm to 10mm!. We show that to
first order the amount of deformation experienced by
droplet is dependent only on the electrical double layer str
distribution produced by the undeformed, spherical bod
Numerical results for the extent of deformation are provid
for cases involving both attractive and repulsive electri
double layer forces. What emerges from our analysis is, fi
an explicit formula for shape deformation given an electri
double layer stress,@Eq. ~22!#. Subsequently, there emerge
the more long term possibility that one can utilize this fo
mula to subtract the amount of deformation from measu
data~which is in the form of force-vs-substrate displaceme
see Refs.@2# or @3#!, and so obtain quantitative force-vs
intersurface distance information, at least in the asympt
regime.

The work presented here differs from our earlier effo
primarily in that we make no explicit appeal to the Derjagu
approximation to simplify determination of surface stress
~even though we are of the opinion that it is legitimate to
so in most practical situations!. However, an approximate

N
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562 57S. J. MIKLAVCIC
asymptoticanalysis is now emphasized, for which anoth
set of constraints governs. The two themes are complem
tary. Before beginning the body of this paper, it is also a
propriate to mention the works of Denkov and coworke
@9–11#, who estimated the effects of soft interfacial deform
tion on the pairwise interaction of emulsion droplets, by
voking a priori simplifying assumptions about the geomet
of the drops. On the other hand, Dungan and Hatton@12#
took an exact but more numerical approach using a boun
integral formalism valid for linear differential systems to i
vestigate the self-consistent interaction between a sphe
‘‘protein’’ particle and a flat deformable interface. The
represent other potentially useful and alternative approac
to the one taken here.

LINEAR ANALYSIS OF NEUTRALLY BUOYANT
DROPLETS

In the geometry of Fig. 1, we consider the problem
determining the shape of a fluid drop pinned along a fix
contact line on a flat solid surface, and interacting with
charged spherical particle via electrical double layer forc
In isolation, the particle, of radiusa1 , has surface a potentia
c1 ~or equivalently, a surface charges1! while the droplet
has a surface potentialc2 ~surface charges2!. The distance
of their closest approach is denoted byh. At equilibrium, the
interfacial profile of the drop must satisfy the extend
Young-Laplace equation@6,13#

g“* •n5DP* 52gDrz* 1~P* 1SDL* !, ~1!

wheren is the local unit outward normal vector to the su
face. The latter then has local curvature2“* •n. DP* is the
local difference in static pressure across the interface. In
~1!, this is divided up into a contribution from gravity,

FIG. 1. Schematic diagram showing the geometry assumed
the interaction of a fluid drop and a spherical particle. For a n
trally buoyant drop, a bispherical coordinate system is appropr
Polar anglesu1 andu2 are represented by the line joining the tw
bodies, which we set as thez axis. The drop is pinned on a substra
along a contact circle of radius,r c , which is established by spec
fying the polar angleu0 . In this and subsequent figures,h denotes
the distance of closest approach of the particle to the drop in
undeformedstate. In all numerical, worku0 is held fixed at 120°.
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constant term which we refer to as the pressure excess,P* ,
and a term representing the induced stress due to sur
forces,SDL* ,

SDL* 5n•@~Posm* 1 1
2 «E* 2!I2«E* E* #•n. ~2!

@In Eq. ~1! and subsequent equations, dimensional variab
are denoted by an asterisk superscript.#

In the quest for a perturbation analysis of droplet def
mation, it is natural to consider the relative magnitudes of
various terms which appear in Eq.~1!, especially its right
hand side. One obvious length scale in this system is
radius of theundeformeddrop, l 5a2 ~see below!. The stress
and pressure scales are theng/ l . The first term in Eq.~2!, the
osmotic or kinetic term, scales asn0kBT, wheren0 is the
volume number density of a univalent salt in the bulk,kB is
Boltzmann’s constant, andT is the absolute temperature.
we set the scale for the electrostatic potential to bekBT/e ~e
being the unit electric charge! then the electric field strength
varies askkBT/e, wherek5A(2e2n0 /«0« rkBT) is the De-
bye screening parameter~k21 is the Debye screening
length!, «0 is the permittivity of free space, and« r is the
relative permittivity of the electrolyte. This implies that th
second and third terms of Eq.~2!, the Maxwell stress terms
scale as1

2 «k2(kBT/e)2(«5«0« r). That is, also asn0kBT.
With these natural scales in place we find that Eq.~1! reads

“•n52Gz1@K1MSDL#, ~3!

where all terms are now dimensionless. In Eq.~3! we have
introduced the dimensionless groupsG andM , defined as

G5
gDr l 2

g
and M5

ln0 kBT

g
. ~4!

Respectively, these are the gravitational Bond number wh
measures the relative strength of the gravitational~buoyancy!
force to surface tension, and a surface stress ratio wh
measures the relative magnitude of the electrical double la
force to surface tension. In Eq.~3!, K5 lP* /g is a dimen-
sionless pressure constant which, in the present situatio
determined by the constraint on the droplet shape,r (u), that
the total volume contained within is equal to a known valu
V,

V5 2
3 pE

0

u0
r 3~u!sin~u!du. ~5!

In this section we shall make the simplifying assumption t
the gravity force is negligible, i.e.,G50, which therefore
restricts the practical use of the equations below to syst
involving immiscible fluids of equal density. In the absen
of a double layer induced stress~equivalently, when the drop
and particle are infinitely separated!, the drop then assume
the shape of a truncated sphere of constant radius,a2 . The
excess pressure in the drop above ambient is thenP*
52g/a2 , so that the dimensionless pressure excess iK
52. From this initial state we study departures due to el
trical double layer forces. Although our aim is for a gene
discussion of the changes in shape when electrical do
layer influences are not negligible, the analysis below is
stricted to the condition of relatively weak induced stress
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57 563PERTURBATION ANALYSIS OF DROPLET . . .
i.e., the double layer stress is small compared to surface
sion: M is small. As we have said, the emphasis here
placed on examining the first order departure from sphe
ity.

If r 51 denotes the~dimensionless! shape of the drop in
its undeformed state (M50), then the deformed drop can b
described by the relation

r 511z~x1 ,x2 ,x3!, ~6!

where

z5(
n

z~n!~r !Mn ~7!

describes the departure from the perfect sphere.xi are Car-
tesian coordinates that refer to the origin at thecenterof the
undeformed drop. The Cartesian components of the sur
normal are given by

ni5
~“F ! i

u“Fu
, ~8!

whereF5r 212z. Thus

ni5

xi

r
2

]z

]xi

F122
xj

r

]z

]xj
1S ]z

]xj
D 2G1/2. ~9!

@In Eq. ~9! and subsequent equations, we make use of
summation convention for terms with repeated indices.#

One can expand the denominator in Eq.~9!, assumingz is
small, to obtain the approximation

ni5
xi

r
2

]z

]xi
1

xixj

r 2

]z

]xj
2

xj

r

]z

]xj

]z

]xi
2

1

2

xi

r

]z

]xj

]z

]xj

1
3

2

xi

r S xj

r

]z

]xj

xk

r

]z

]xk
D1o~z3!, ~10!

which, invoking Eqs.~6! and ~7!, leaves the Cartesian form
of the fluid interface curvature expressed as the series

“–n521S xixj

r 2

]2z~1!

]xi]xj
2

]2z~1!

]xi]xi
1

2xi

r

]z~1!

]xi
22z~1!D M

1Fxixj

r 2

]2z~2!

]xi]xj
2

]2z~2!

]xi]xi
1

2xi

r

]z~2!

]xi
22z~2!

2
2

r

]z~1!

]xi

]z~1!

]xi
1

7

r S xj

r 2

]z~1!

]xj
D 2

22
xj

r

]2z~1!

]xj]xi

]z~1!

]xi

1
xi

r

]z~1!

]xi
S 2

xkxj

r 2

]2z~2!

]xk]xj
2

]2z~2!

]xk]xk
D GM21••• .

~11!

Similar parameter expansions for the induced surface st
and the reference pressure can be developed. A simple s
series expansion for the reference pressure is
n-
s
c-

ce

e

ss
lar

K5 (
n50

`

K ~n!Mn, ~12!

whereK (0) is equal to 2, by definition. The Maclaurin ex
pansion of the induced surface stress in powers of the sur
perturbation,

SDL5S~0!1~“S!0•zr1~““S!0 :z2rr 1••• ,

can be converted using Eq.~7! into an expansion in terms o
the parameterM :

SDL5S~0!1S ]S

]r D
0

z~1!M

1F S ]S

]r D
0

z~2!1
1

2 S ]2S

]r 2 D
0

z~1!2GM21••• , ~13!

in which the 0 subscripts and superscripts refer to the
that the quantities concerned are to be evaluated on the
deformed droplet surface, i.e., on the truncated sphere.

It is more than likely that Eqs.~7!–~13! represent slowly
converging series for any significant induced stress. If so
is debatable whether a perturbation calculation going bey
first order will prove to be worthwhile whenM is not small.
Despite this, we persevere with a first order analysis wh
will nevertheless give an indicative measure of t
asymptotic response of the droplet shape to double la
forces.

Substitution of Eqs.~11!–~13! into Eq. ~3! leads to an
inhomogeneous partial differential equation~p.d.e.! for the
first order correction to the shape of the undeformed sph
cal shape: in Cartesian coordinates, this is

2S ]2z~1!

]xi]xi
22xj

]z~1!

]xj
2xixj

]2z~1!

]xi]xj
12z~1!D 5K ~1!1S~0!.

~14!

As we assume that buoyancy effects are negligible so tha
undeformed drop is spherical, it is appropriate that we
write the above p.d.e. in spherical coordinates. The gove
ing equation becomes

2
1

sin~u!

]

]u S sin~u!
]z~1!

]u D 2
1

sin2~u!

]2z~1!

]f2 22z~1!

5K ~1!1S~0!. ~15!

This p.d.e. is more general than is necessary for our p
poses, as we presume perfect axisymmetry which relievz
of any dependence on the azimuthal coordinatef. We pre-
sume this also to be the situation in most if not all AF
experiments. Adopting the variable changem5cos(u), the
governing equation is then the inhomogeneous Legendre
ferential equation of degree 1,

]

]m S ~12m!2
]z~1!

]m D 12z~1!52S~0!2K ~1![R~m!.

~16!

The homogeneous form of Eq.~16! has two linearly indepen-
dent solutions,
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564 57S. J. MIKLAVCIC
P1~m!5m, Q1~m!5 1
2 m lnS 11m

12m D21. ~17!

Using these we can construct a solution to Eq.~16! which
satisfies the appropriate boundary conditions onz (1). The
conditions onz (1) are the fixed contact line condition at th
drop’s base and axisymmetry:

z~1!~u0!50,
]z~1!

]u U
u50

50. ~18!

Rather than using the homogeneous solutions~17! directly,
we use the following combinations which, respectively, s
isfy the conditions given in Eq.~18!:

y1~m!5P1~m!, y2~m!5P1~m!Q1~m0!2P1~m0!Q1~m!.
~19!

In Eq. ~19!, we introducedm05cos(u0). The perturbation
z (1) can be found using the Green function method,
equivalently, using the method of variation of paramete
Using the latter, we find that

z~1!~m!52y1~m!E
m0

m y2~j!R~j!

~12j2!W~y1 ,y2!
dj

1y2~m!E
m

1 y1~j!R~j!

~12j2!W~y1 ,y2!
dj, ~20!

whereW is the Wronskian of the two solutions,

W~y1 ,y2!5y1~y2!82~y1!8y252
P1~m0!

~12m2!
. ~21!

Explicitly, in terms of Legendre functions, the solution b
comes

z~1!~m!5P1~m!
Q1~m0!

P1~m0! S E
m0

1

P1~j!R~j!dj

22E
m

1

P1~j!R~j!dj D 2P1~m!E
m0

m

Q1~j!R~j!dj

1Q1~m!E
m

1

P1~j!R~j!dj, ~22!

where R is given by the right hand side of Eq.~16!. The
constantK (1) is determined by the constant volume co
straint derived from Eq.~5!,

E
m0

1

z~1!~m!dm50. ~23!

It is simply

K ~1!52
I ~S~0!!

I ~1!
, ~24!

whereI is the sum of two integrals;
-

,
.

I ~x!5E
m0

1

y1~m!S E
m0

m

y2~j!x~j!dj D dm2E
m0

1

y2~m!

3S E
m

1

djy1~j!x~j! D dm. ~25!

DOUBLE LAYER STRESS TENSOR
FOR TWO SPHERICAL PARTICLES

Our interest in determining departures from spheri
form of a charged droplet due to the stress induced b
nearby rigid charged spherical particle suggests using wh
already available in the literature in regard to the dou
layer interaction between two spherical charged bodies@14–
18#. In particular, we implement the results derived
Carnie, Chan, and Gunning@18# for the interaction of two
spheres within the linear Poisson-Boltzmann approximati
The authors of Ref.@18# employed a bispherical coordinat
system identical to that shown in Fig. 1, to produce a form
for the double layer force between two spherical rigid p
ticles. The force can be given by integration of the to
stress over the surface of either particle. Here it is the nor
component of the stress on the particle~drop! surface itself
which is of more interest to us, and is given in our notati
by

~S tot
~0!!* [snn* 5n•@~Posm* 1 1

2 «E* 2!I2«E* E* #•n

5
1

2
«~k2c* 21Eu*

22Er*
2!, ~26!

where

Eu* 52
1

r *
]c*

]u
and Er* 52

]c*

]r *
, ~27!

respectively, are the polar and radial components of the e
tric field in the double layer around the particles~the azi-
muthal component being zero!. The electrostatic potentia
from which the field is derived can be shown to have t
following simple form:

c* 5(
0

`

dn* ~r !Pn„cos~u!…. ~28!

The coefficients of this expansion are determined in
straightforward although tedious manner. The reader is
ferred to Ref.@18# for the necessary details. The normal com
ponent of the stress tensor evaluated on the drop’s un
formed surface is evaluated by substitution of Eq.~28! into
Eq. ~27!, and into Eq.~26!, and evaluating the latter atr
5a2 ,

~S tot
~0!!* 5 1

2 «k2S kT

e D 2

(
n,m50

` H Pn~m!Pm~m!

3@dn~ka2!dm~ka2!2dn8~ka2!dm8 ~ka2!#

1
~12m2!

~ka2!2 dn~ka2!dm~ka2!Pn8~m!Pm8 ~m!J .

~29!
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57 565PERTURBATION ANALYSIS OF DROPLET . . .
The contents within parentheses are nondimensional, and
factor out front is the correct scaling of the double lay
stress using the potential scaling ofkBT/e, discussed in the
previous section. The sum on the right hand side is there
related to the dimensionless external stress distributionS (0)

appearing in Eq.~16!.
This normal stress distribution is distance depend

through the coefficients,dn . However, it includes a spheri
cally symmetric stress contribution associated with
charged drop’s double layer which remains even when
second particle is absent. This contribution is given by
m5n50 term in the above infinite sum, in the limit o
h→}. Explicitly, this is given by

~Sunif
~0! !* 52 1

2 «k2S kT

e D 2

~112ka2!
c̄2

2

~ka2!2 , ~30!

where c̄2 is the nondimensional potential on thedrop sur-
face. In this knowledge, the term to be inserted into Eq.~16!
is the difference,

S~0!5S tot
~0!2Sunif

~0! , ~31!

rather thanS tot
(0) itself @23#.

We have solved the double layer problem for two sphe
in the manner outlined in Ref.@18# for the case of constan
but unequal surface potentials. The net stress contribu
Eq. ~31!, has been implemented in Eq.~22! to give the de-
formation to first order. Results of these calculations are
cussed in the next section.

NUMERICAL RESULTS FOR NEUTRALLY BUOYANT
DROPS

For the common salt concentration of 1023M , we expect,
on the basis of the parameterM , that the perturbation for-
mulation presented in this paper will hold valid for qui
generous values of the drop radii. For instance, consider
case of air bubbles in water, the bubble radii can be as la
as 30mm before the theory can be expected to break do
For a salt concentration of 1025M , the bubble radius limit
increases to 3 mm. Naturally, with the possibility that
practice either surface can have a potential larger thankBT/e
~'25 mV at 25 °C!, the coefficients in the series expansi
for K andz may themselves be sufficiently large to slow t
convergence of the series or even cause it to diverge.
possibility is given consideration in the figures below whe
the coefficientsK (1) andz (1) are studied for their dependenc
on surface potentialsc1 and c2 , radii and the separation
between the spherical particle and theundeformedfluid drop
h. The reader should remain conscious of the fact that th
results are nondimensional. Dimensionally meaningful qu
tities are the shape functionr * (u) and the pressure exces
written as

r * ~u!5a21a2z~1!~u!M ~32a!

and

P* 5
2g

a2
1

g

a2
K ~1!M . ~32b!
the
r

re

t

e
e
e

s

n,

s-

he
ge
n.

is

se
-

Alternately, the quantitiesK (1) and z (1) can be judged for
their physical significance when multiplied byM and com-
pared with unity and 2, respectively~see Fig. 4!.

It stands to reason that a repulsive double layer force
lead to a flattening of the drop, while an attractive doub
layer force will cause an elongation. This is of course bo
out in our results. For example, monotonically repulsi
forces are generated when the surface potentials are e
Figure 2 represents such cases for three different sets of
face potentials. Even the largest set of potentials (c15c2
575 mV) give no great cause for concern for convergen
and this is likely to stay the situation even at higher pote
tials, although the nonlinear Poisson-Boltzmann should
ally be implemented at that stage. A negative value ofz (1)

implies a displacement of the surface below the spher
form, giving rise to a pressure increase in the drop deno
by a positive value ofK (1). Qualitatively, both the pressur

FIG. 2. Deformation effects in a neutrally buoyant, charged d
due to double layer forces as a function of minimum separa
between the spherical particle and theundeformeddrop. ~a! dem-
onstrates the typical response of the pressure excess inside the
to double layer stresses.~b! shows the corresponding values of th
shape deformation at the apex of the drop~the point of closest
approach!. All quantities shown are dimensionless. Parameters
sumed in the calculations are as follows. Radii:a1510 nm, a2

5100 nm; salt concentration:n051023M , giving a Debye length
of k2159.62 nm; surface tension isg572.8 mN/m appropriate for
an air-water interface. These parameters lead to a value oM
50.3431022. Values of the surface potential for the differe
cases are shown in the figure.
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566 57S. J. MIKLAVCIC
and the deformation increase with increased surface pote
and decay exponentially with separation. Exponential de
in deformation was also calculated by this author in an e
lier publication@6#. In more general cases of unequal surfa
potentials, we expect to see more diverse behavior@7# ~Fig.
3!. If the potentials are of the same sign, then a repuls
double layer force is predicted at large separations, while
attraction is predicted at short separations. If they are of
posite sign then a monotonic attraction is expected. T
magnitudes and signs of the values of deformation and p
sure excess shown in Fig. 3 reflect the induced stresse
these respective circumstances.

Increasing the size of the drop and particle and decrea
the salt concentration in such a way thatka1 andka2 remain
the same, e.g., decreasingk by an order of magnitude~de-
creasing salt concentration by two orders of magnitude! and
increasinga1 and a2 each by the corresponding order
magnitude, returns the values ofK (1) andz (1) shown in Fig.
2. However, doing so leavesM reduced by a factor of 10
Thus, in dimensional terms@Eq. ~32!# the same amount o
absolute deformation results in an absolute pressure ex
change which is down by a factor of 100, and a relat
change down by a factor of 10. Considering more gene
circumstances, the variation in the relative difference

FIG. 3. As for Figs. 2~a! and 2~b!, but for increasing unequa
values of surface potential~indicated on the figures!. Note that posi-
tive pressure excesses imply an increase in pressure inside the
negative values imply pressure decreases. Negative~positive! val-
ues ofz (1) imply displacement of the surface below~above! spheri-
cal form. Quantities shown are dimensionless.
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shape and pressure,z (1)M andK (1)M /2, with droplet size is
shown in Fig. 4, for three droplet radii under purely repulsi
double layer forces.

One particular point of interest is the effect of surfa
forces on the internal pressure induced by a neighboring
ticle. The assumption that the pressure excess remains
stant was made in recent calculations of the extent of de
mation by colloidal forces@5–8#. It seems reasonable tha
any pressure change accompanying deformation will be n
ligible for microscopic to macroscopic fluid drops. Since t
surface forces act only over a length scale of the De
lengthk21, one would not expect much variation in the dro
volume and therefore pressure excess, when the droplet
is many orders of magnitude larger thank21. This reasoning
is now vindicated by the results in Fig. 4. As the figure a
shows, K (1)M /2 decreases monotonically with increasin

op,

FIG. 4. Deformation effects in a neutrally buoyant, charged d
due to double layer forces as a function of minimum separa
between the spherical particle and theundeformeddrop: consider-
ation of initial droplet size.~a! shows pressure excess variation wi
separation, while~b! shows the corresponding variation in ape
deformation. By definition, relative pressure difference, and rela
deformation are dimensionless quantities. Parameters assum
the calculations are as follows. Particle radiusa151 mm, surface
potentials c15c2550 mV, and salt concentrationn051025M ,
giving a Debye length ofk21596.2 nm; the surface tension isg
572.8 mN/m, appropriate for an air-water interface. These par
eters lead to values ofM50.84131023, 0.1731022, and 0.34
31022, for drop radiia252.5, 5, and 10mm, respectively. These
values of the drop radiusa2 are shown in the figure.
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size of the original drop.z (1)M , on the other hand, increase
all the while remaining quite small on the scale of the act
drop ~unity!. That the dimensional magnitudes of deform
tion are also quite modest on the scale of the separa
between the bodies, is in line with the conditions of the p
turbation calculation. Naturally, assuming a lower ene
surface than the air-water interface,g572 mN/m which is
used as the basis for this data, will of course lead to gre
deformation. The same can be said of using a larger sur
potential. It has been shown elsewhere@6# that outside the
restrictions of the perturbative regime (M>1), which is the
trend indicated in Fig. 4, the predicted values of deformat
are comparable to the surface separation, which then m
it a matter of significance for the interpretation of direct s
face force experiments.

ACCOUNTING FOR THE INFLUENCE
OF DROP BUOYANCY

When the two immiscible fluids have different densitie
the isolated pinned drop will no longer assume a spher
shape but will take either the form appropriate for a sessile
hanging drop depending on the sign of the density diff
ence, under the influence of gravity. If a charged particle
then brought into its vicinity the drop surface will diverg
from this sessile shape. Although more demanding, a pe
bation analysis can still be performed, and we outline
details in this section without explicit calculations.

The equation of relevance is again Eq.~3!, now with G
Þ0. Since the drop in the absence of surface forces is n
spherical, no special advantage can be taken of a sphe
coordinate system~although it can nevertheless be adopte
if desired!. Here we adopt a cylindrical coordinate syste
once more assuming axisymmetry. The deformed drop sh
is given by

z~r !5z~r !5z0~r !1j~r !, ~33!

wherez0 is a function ofr , describing the isolated sessi
drop, andj represents the perturbation due to the action
surface forces. The normal vector to the surface is given
cylindrical coordinates by

n5
ẑ2@z08~r !1j8~r !# r̂

A11~z081j8!2
. ~34!

The local curvature is then the divergence of this vector n
mal,

2“•n5
z09~r !1j9~r !

@11~z081j8!2#3/21
1

r

@z08~r !1j8~r !#

A11~z081j8!2

'
z09~r !

@11~z08!2#3/21
1

r

z08~r !

A11~z08!2

1
1

r

d

dr S r j8~r !

@11~z08!2#3/2D 1O~j2!. ~35!

The last expression is correct to first order inj, and assumes
it is small compared with the overall length scale of the dr
The first two terms are familiar as expressions for the t
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principle curvature of the sessile drop. To leading order o
the third term comes into a consideration of the effect
surface forces. The governing equation for the perturbatio
derived from Eq.~3! by substitution of Eqs.~33! and ~35!,
taking heed of the fact that to leading orderj is formally
proportional toM by construction, and should be identifie
with z (1) of the previous section. The governing equation
then

2
1

r

d

dr S r j8~r !

@11~z08!2#3/2D 52Gj~r !1K ~1!1S~0!~r !.

~36!

Although linear inj, it is difficult to solve Eq.~36! analyti-
cally in general, as the coefficients are functions of rad
and likely only to be known as numerical data. If homog
neous solutions were known, then a solution analogous
Eq. ~22! can be written down.

The problem could be simplified somewhat if surfa
forces were known only to act over a region near the a
where the sessile drop has low curvature. Equation~36! can
then be simplified by assumingz08(r )!1. This leads to an
inhomogeneous Bessel equation

j9~r !1
1

r
j8~r !2Gj~r !52K ~1!2S~0!~r !, ~37!

describing the perturbation in this region, while, far from t
source of external surface stress, where the curvature ca
more significant, the perturbation must satisfy

2
1

r

d

dr S r j8~r !

@11~z08!2#3/2D 52Gj~r !1K ~1!. ~38!

These equations are supplemented, as before, by approp
boundary conditions of symmetry at the apex, and o
pinned contact line at some set radius,r c ,

j8~0!50, j~r c!50, ~39!

together with matching conditions of value and slope of
two solutions of Eqs.~37! and ~38! at some appropriate ra
dius, r match

j I~r match!5j II~r match!, j I8~r match!5j II8~r match!. ~40!

~Subscripts I and II denote the low and high curvature
gions, respectively.! The pressure variation is again given b
condition ~23!.

While the above mathematical model has relevance
systems involvingsurface boundcharged drops with density
different to the surrounding bulk phase, considerably m
numerical effort is involved in the calculations compar
with the case of neutrally buoyant drops.~For unattached
drops, the shapes are much more likely to be spherical as
drops move through the continuous phase.! For consideration
of the AFM experiments on interactions between a colloi
particle and a bubble or an oil droplet@2–4,19,20#, or our
own surface force experiments involving mercury drops@5#,
if one is to follow the above scheme one must first determ
the original sessile drop shape by~numerical! integration of
Laplace’s equation, obtain the numerical solution of Eq.~36!
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@or Eqs.~37! and ~38!#, and subsequently evaluate the pre
sure constant,K (1). All of these steps are performed with th
proviso that one has a quantitative description of the dou
layer stress distribution over the original sessile surface.
again, since the sessile drop shape is likely to be known o
numerically, the best scenario~i.e., invoking the Derjaguin
approximation! will involve numerical double layer stres
data, which then enforces further numerical integration.
this reason we do not see any advantage of this metho
this time, over a full and direct numerical integration
modified Laplace equation when both buoyancy and surf
forces are present, as we have performed in the past@6,7#.
We therefore make no further use of the analysis of t
section.

SUMMARY AND FINAL REMARKS

We presented a linear perturbation study of fluid-liqu
interfacial deformation due to electrical double layer forc
of drops. The problem of a neutrally buoyant drop pinned
a solid surface interacting with a spherical particle was f
mulated in detail. While the resultant governing equation
scribing axisymmetric departures from spherical form, E
~16!, has appeared in the literature previously@13,21,22#, the
equations for more general deformations, Eqs.~14! and~15!,
do not seem to be as familiar in the literature. An analyti
solution to the axisymmetric problem was given, and sub
quently investigated numerically for explicit dependences
e,
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surface and solution conditions. The mathematical mo
covering the more general situation of a buoyant drop, ag
appears to be new to the literature, and may be usefu
readers interested in either equilibrium or dynamic proble
involving deformable drops in other circumstances. It w
not explicitly studied here.

While the perturbation analysis and numerical results p
vided are correct, we remark, finally, that numerical inacc
racies do arise for certain combinations of parameters o
than those used to produce the figures herein. The difficu
are associated with the fact that in this problem there aretwo
clearly defined length scales, the Debye screening len
k21, and the size of the drop,l 5a2 . As we have already
pointed out, double layer forces act on the length scale of
former, while shape changes are based on the droplet
This suggests that, when these length scales differ cons
ably ~beyond the values assumed here!, an analysis based o
the method of matched asymptotic expansions would
more appropriate than the straightforward expansion met
adopted here. Although it will certainly be valuable to purs
a matched asymptotic analysis valid for very large drops,
results given here have their place in colloidal situations.
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