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Perturbation analysis of droplet deformation under electrical double layer forces

S. J. Miklavci¢
lan Wark Research Institute, University of South Australia, The Levels Campus, SA 5095 Australia
(Received 31 March 1997

Fluid-liquid interface deformation by electrical double layer surface forces introduces several difficulties for
the accurate interpretation of fluid-drop—particle interaction measurements. We investigate the source of these
difficulties theoretically using a perturbation method. Relevant quantities, such as interface shape and droplet
internal pressure, are expressed in series expansions in a dimensionless pavemgigksT)/(y/1), being
the ratio of electrical double layer forces to surface tension, i.e., an effective double layer Bond number.
Governing equations are truncated to first ordetMn and solved for the deformation in droplet shape to
leading order. Analytical and numerical results for the case of neutrally buoyant drops interacting with charged
spherical particles allow for a quantitative examination of the extent of deformation. The case of drops
experiencing finite buoyancy is also formulated in a linear theory, and a method of solution is outlined.
[S1063-651%98)07901-X

PACS numbg(s): 47.55.Dz, 82.70.Dd, 68.16m, 83.50--v

INTRODUCTION calculations of equilibrium droplet shapes. The equation
governing the interfacial profile is well known. Thus, given a
The capture of small mineral particles in a heterogeneousorm for the induced surface stress distribution, the shape
colloidal dispersion by gas bubbles is the key to successfulunction can be evaluated and the extent of deformation de-
mineral flotation[1]. Two problems which arise in this pro- termined. The question we ultimately aim to answer is
cess of separating specific particles of a mixture usingvhether theory can make possible the determination of the
bubbles ardi) knowing whether a favorable interaction ex- intersurface distance during the measurement process. As
ists between the two entities, afid) if not, whether modifi-  was stressed in previous publicatides7], surface deforma-
cations can be introduced to achieve the desired interactiomion, occurring in colloid dispersions involving immiscible
These issues were recently addressed in some experimenfhiids, can lead to quite surprising behavior under otherwise
studies of the direct equilibrium interaction between a colloi-well-understood conditiong3].
dal particle and a bubble using an atomic force microscope In this paper we model the important features of the in-
(AFM) [2—4]. Unfortunately, a new concern emerged from teraction between a fluid drop and a colloidal particle as exist
these experiments: the question of whether one can properly the AFM experimental studies. We focus attention on ana-
interpret the measured experimental data in the usual form dfzing the change in shape of the fluid drop induced by sur-
force-vs-intersurface separation, knowing that at least one dhce forces, using regular perturbation theory. The point of
the surfaces—the fluid interface—suffers considerable defordeparture is the well-established, linear mean-field analysis
mation under the action of surface forces. In these circumef the electrical double layer about and between two spheri-
stances, fluid-liquid deformation implies foremost that onecal colloidal objects, which we have implemented to con-
has no direct knowledge of the instantaneous surface possider a range of surface potentiélgp to 75 m\j and particle
tion associated with a given measured force. Second, thand droplet sizegfrom 100 nm to 1Qum). We show that to
measured net force itself is an integral of an unknown indirst order the amount of deformation experienced by the
duced surface stress distribution acting on a smooth but urdroplet is dependent only on the electrical double layer stress
known varying surface. Without doubt these are two verydistribution produced by the undeformed, spherical bodies.
important considerations. In short, one of the greatest drawNumerical results for the extent of deformation are provided
backs of using the AFM in its current form for this situation for cases involving both attractive and repulsive electrical
is that one is essentially working blind. Although efforts aredouble layer forces. What emerges from our analysis is, first,
being made to circumvent the problem, there has yet to ban explicit formula for shape deformation given an electrical
any direct experimental progress with regard to establishinglouble layer stres$Eq. (22)]. Subsequently, there emerges
the separation between the two surfaces or the shape of thiee more long term possibility that one can utilize this for-
fluid-liquid interfacein situ, as there is with the surface mula to subtract the amount of deformation from measured
forces apparatuib]. data(which is in the form of force-vs-substrate displacement;
One suggestion to be considered seriously in the mearsee Refs[2] or [3]), and so obtain quantitative force-vs-
time, as a means of deconvoluting the effect of deformationntersurface distance information, at least in the asymptotic
from the measurements, is to make direct use of theoreticakgime.
The work presented here differs from our earlier efforts
primarily in that we make no explicit appeal to the Derjaguin
*Present address: Department of Science and Engineering, ITBpproximation to simplify determination of surface stresses
Campus Norrkping, University of Link@ing, S-602 19, Norrko- (even though we are of the opinion that it is legitimate to do
ing, Sweden. so in most practical situationsHowever, an approximate
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constant term which we refer to as the pressure exé¥ss,
and a term representing the induced stress due to surface
0 forces, 35, ,

sL=n-[(I1%+ 3eE*?) | —¢E*E*]-n. )

h r [In Eqg. (1) and subsequent equations, dimensional variables
are denoted by an asterisk superscfipt.
In the quest for a perturbation analysis of droplet defor-
X,y mation, it is natural to consider the relative magnitudes of the
0, various terms which appear in E@l), especially its right
hand side. One obvious length scale in this system is the
E: radius of theundeformedirop,| =a, (see below. The stress
and pressure scales are thgh. The first term in Eq(2), the
osmotic or kinetic term, scales agkgT, whereng is the
FIG. 1. Schematic diagram showing the geometry assumed forolume number density of a univalent salt in the buk,is
the interaction of a fluid drop and a spherical particle. For a neuBoltzmann’s constant, andl is the absolute temperature. If
trally buoyant drop, a bispherical coordinate system is appropriatewe set the scale for the electrostatic potential t.g¥/ e (e
Polar angleg, and 6, are represented by the line joining the two being the unit electric chargéhen the electric field strength
bodies, which we set as tlzeaxis. The drop is pinned on a substrate varies askkgT/e, wherex= \/(292”0/808rkBT) is the De-
along a contact circle of radius,, which is established by speci- pye screening parametefx ! is the Debye screening
fying the polar angle, . In this and subsequent figurésdenotes  |ength), &, is the permittivity of free space, ang, is the
the distance of closest approach of the particle to the drop in it§g|ative permittivity of the electrolyte. This implies that the
undeformedstate. In all numerical, world, is held fixed at 120°. second and third terms of E(R), the Maxwell stress terms,
scale as;ek?(kgT/€)?(e=gqe,). That is, also asigkgT.
asymptoticanalysis is now emphasized, for which anotherwith these natural scales in place we find that B¢.reads
set of constraints governs. The two themes are complemen-
tary. Before beginning the body of this paper, it is also ap- V.n=-Gz+[K+MZp ], (€)
propriate to mention the works of Denkov and coworkers

[9-11], who estimated the effects of soft interfacial deforma—Where all terms are now dimensioniess. In E3). we have
tion on the pairwise interaction of emulsion droplets, by in-Introduced the dimensionless groupsandM, defined as

™

voking a priori simplifying assumptions about the geometry gApl? INe KT
of the drops. On the other hand, Dungan and Haftt® G= and M= ——2_ (4)
took an exact but more numerical approach using a boundary Y

integral formalism valid for linear differential systems to in-
vestigate the self-consistent interaction between a spheric
“protein” particle and a flat deformable interface. These
represent other potentially useful and alternative approach
to the one taken here.

ﬁP]]espectively, these are the gravitational Bond number which
easures the relative strength of the gravitatighabyancy
force to surface tension, and a surface stress ratio which
FReasures the relative magnitude of the electrical double layer
force to surface tension. In E€3), K=IP*/vy is a dimen-
sionless pressure constant which, in the present situation, is

LINEAR ANALYSIS OF NEUTRALLY BUOYANT determined by the constraint on the droplet shapé), that
DROPLETS the total volume contained within is equal to a known value,

In the geometry of Fig. 1, we consider the problem of
determining the shape of a fluid drop pinned along a fixed fo .
contact line on a flat solid surface, and interacting with a VZ%”L r3(6)sin(6)de. ®
charged spherical particle via electrical double layer forces.
In isolation, the particle, of radius, , has surface a potential |n this section we shall make the simplifying assumption that
1 (or equivalently, a surface charge) while the droplet the gravity force is negligible, i.eG=0, which therefore
has a surface potential, (surface charge,). The distance restricts the practical use of the equations below to systems
of their closest approach is denotedtoyAt equilibrium, the  involving immiscible fluids of equal density. In the absence
interfacial profile of the drop must satisfy the extendedof a double layer induced streg@squivalently, when the drop

Young-Laplace equatiof6,13] and particle are infinitely separajedhe drop then assumes
the shape of a truncated sphere of constant radiysThe
YV* -n=AP* = —gApz* +(P*+3%) (1)  ©Xcess pressure in the drop above ambient is tRé&n

=2vyla,, so that the dimensionless pressure excesK is

=2. From this initial state we study departures due to elec-
wheren is the local unit outward normal vector to the sur- trical double layer forces. Although our aim is for a general
face. The latter then has local curvatu& * -n. AP* isthe  discussion of the changes in shape when electrical double
local difference in static pressure across the interface. In Edayer influences are not negligible, the analysis below is re-
(1), this is divided up into a contribution from gravity, a stricted to the condition of relatively weak induced stresses,
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i.e., the double layer stress is small compared to surface ten- *

sion: M is small. As we have said, the emphasis here is K= KM™M", (12)
placed on examining the first order departure from spheric- n=0

ity.

whereK(© is equal to 2, by definition. The Maclaurin ex-
pansion of the induced surface stress in powers of the surface
perturbation,

If r=21 denotes thédimensionlessshape of the drop in
its undeformed stateM =0), then the deformed drop can be
described by the relation

SoL=2 O+ (V) Lr+(VV)g: 2rr +-+-

r=1+¢(X1,X2,X3), (6)
can be converted using E) into an expansion in terms of
where the parameteM:
>
(=2 (MM Y 2m=2”H-;—)d”M
n r 0
describes the departure from the perfect spherare Car- n (g @4 1 ((92_2) W2\M24... . (19)
tesian coordinates that refer to the origin at teaterof the or 05 2\ or? Oé '
undeformed drop. The Cartesian components of the surface
normal are given by in which the O subscripts and superscripts refer to the fact
that the quantities concerned are to be evaluated on the un-
n__(VF)i ®) deformed droplet surface, i.e., on the truncated sphere.
" |VF] It is more than likely that Eq9.7)—(13) represent slowly
converging series for any significant induced stress. If so, it
whereF=r—1—¢. Thus is debatable whether a perturbation calculation going beyond
first order will prove to be worthwhile whekl is not small.
Xi ¢ Despite this, we persevere with a first order analysis which
Toox will nevertheless give an indicative measure of the
n,= ANTE 9 asymptotic response of the droplet shape to double layer
X 9L (ag) ¢
1—22 = 4 orces.

rooxp \dx Substitution of Eqgs(11)—(13) into Eq. (3) leads to an

inhomogeneous partial differential equatigmd.e) for the

[In Eq. (9) and subsequent equations, we make use of th§yst order correction to the shape of the undeformed spheri-
summation convention for terms with repeated indites. 5 shape: in Cartesian coordinates, this is

One can expand the denominator in E2), assuming; is
small, to obtain the approximation ( ¢ arv e

2X — X X: +2§(1)):K(1)+2(0).
. AIX: J . 17 L AX
X 90 XX 9L X 9L 9L 1% 0 ¢ %% %, 99X

XL X 98 % o€ oL X oL 9L 14

n;

r aXi r (9Xj r ﬂXj &Xi 2r (9Xj &Xj
As we assume that buoyancy effects are negligible so that the
gﬁ Xj 9 X d¢ to(s? (10) undeformed drop is spherical, it is appropriate that we re-
21 \r ox;r axg 0(¢%), write the above p.d.e. in spherical coordinates. The govern-

ing equation becomes
which, invoking Eqgs(6) and(7), leaves the Cartesian form

of the fluid interface curvature expressed as the series 19 sin 6) a¢W 1 (925(1)_%(1)
sin(9) 36 30 | sir(0) d¢?
Voneo4 XiX; P 2D 2% 9™ 2 |y o
n= r_2 &Xi(?)(j &Xi&Xi T (9Xi g =K+ (15)
xx; L2 L@ 2% g , This p.d.e. is more general than is necessary for our pur-
7 ok axd T3 272 poses, as we presume perfect axisymmetry which reliéves
= oXioX)oxiox T oX of any dependence on the azimuthal coordinat&Ve pre-
(1) 5-(1) (D)2 o 9271 5#(1) sume this also to be the situation in most if not all AFM
290 aL 7 [ %X 9 Xi 90\ 9L
i i . s )
- — ol ) —2— experiments. Adopting the variable change-cos{), the
rooxi oxp r\re ooax r oxjoX; oXi . o : .
governing equation is then the inhomogeneous Legendre dif-
x; ¢V xixj 02¢? 922 ) ferential equation of degree 1,
— — - +
rox % axdx;  IXkdXy J o
— — )2 D=_30)_k)=
(11 Iu ((1 ) I +2{Y=-3% KY=R(u).

. . : (16)
Similar parameter expansions for the induced surface stress

and the reference pressure can be developed. A simple scalBine homogeneous form of E(L6) has two linearly indepen-
series expansion for the reference pressure is dent solutions,
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+M 1 I 1
Piu(w)=un, Qilm)= 2#'”( )—1- 17 1(x)= yﬂu)( Y2(§)X(§)d§)dﬂ_ ya(p)
M Mo ) Mo

Using these we can construct a solution to Ep) which
satisfies the appropriate boundary conditions {6h. The
conditions onZ!) are the fixed contact line condition at the

drop’s base and axisymmetry: DOUBLE LAYER STRESS TENSOR
2 FOR TWO SPHERICAL PARTICLES

(1) = -2
g (00) O! 90

1
x f dgyl(ax(s))dﬂ. (29
"

=0. (18 Our interest in determining departures from spherical
6=0 form of a charged droplet due to the stress induced by a
nearby rigid charged spherical particle suggests using what is
already available in the literature in regard to the double
layer interaction between two spherical charged bodids-
18]. In particular, we implement the results derived by
_ _ B Carnie, Chan, and Gunnid.8] for the interaction of two
Yalw)=Pa(w), ya(1)=Pa(s)Qulro) Pl(MO)Ql(’l(Ll)é) spheres within the linear Poisson-Boltzmann approximation.
The authors of Refl18] employed a bispherical coordinate
system identical to that shown in Fig. 1, to produce a formula
for the double layer force between two spherical rigid par-
ticles. The force can be given by integration of the total
stress over the surface of either particle. Here it is the normal
component of the stress on the parti@iizop surface itself
yo(E)R(E) which is of more interest to us, and is given in our notation

d b
o (1— @ W(y1ys) y

Rather than using the homogeneous solutidng directly,
we use the following combinations which, respectively, sat-
isfy the conditions given in Eq18):

In Eq. (19), we introduceduy=cos(,). The perturbation
{1 can be found using the Green function method, or,
equivalently, using the method of variation of parameters.
Using the latter, we find that

{P(p)=—yi(w)

(0)y* — _ * 2\ _ *ExT.
+y( )j y1(§)R(§) dg (20) (Etot) =n- [(Hosm 28E )I—eE*E ] n
2L (1-E)W(Y1,Y2) _E 2 %2, =2 %2
—28(K Y+ ER—ESY), (26)
whereW is the Wronskian of the two solutions,
where
WOy Y2 =ya(y) — (y2) ya= - 22D (g 1oy oy

Y1.¥2)=Yily2 Y1)'Y2 (1-p?) Ez:_r_*ﬁ andEf:_ar_*’ (27)

Explicitly, in terms of Legendre functions, the solution be- regpectively, are the polar and radial components of the elec-
comes tric field in the double layer around the particlébe azi-
Oulpro) L muthal component being zeroThe electrostatic potential
1L Mo i i i i
(VD (w)=Py(p) W (f P,(&R(&)dé from which the field is derived can be shown to have the
Mo

o) following simple form:
122 2]
-2 f P.(&)R (f)dg)—m(m LOQl(g)R(g)ds W* =3 di(1)Py(cos 6)). (28)
+Q1(M)flP1(E)R(§)d§, (220  The coefficients of this expansion are determined in a
w straightforward although tedious manner. The reader is re-

ferred to Ref[18] for the necessary details. The normal com-
whereR is given by the right hand side of Eq16). The ponent of the stress tensor evaluated on the drop’s unde-
constantK®) is determined by the constant volume con-formed surface is evaluated by substitution of E2f) into

straint derived from Eq(5), Eq. (27), and into Eq.(26), and evaluating the latter at
=3ay,
1
{W(p)du=0. (23) T2

#o (i) = (—) 2 1 Po(p)Pn(p)

It is simply ’ , )
X[dn(xap)dm(kay) —dy(kap)dy(kay) ]
KL= _ 121 (24) (1—p?)
(1) +Wd n( K@) dm(k82) Pr( ) Pry(p) (-

wherel is the sum of two integrals; (29
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The contents within parentheses are nondimensional, and the 1 —
factor out front is the correct scaling of the double layer
stress using the potential scaling kafT/e, discussed in the Y / ¥i = 7MYy =T -
previous section. The sum on the right hand side is therefore = FEN :\_\ v, w50V, v, SOmY
related to the dimensionless external stress distrib@ih f 107 & ; ' ’ =
appearing in Eq(16). g : 3
This normal stress distribution is distance dependent & 3 N E
through the coefficients],,. However, it includes a spheri- § u : ~ . ]
cally symmetric stress contribution associated with the & 10 F 3
charged drop’s double layer which remains even when the = - / N
second particle is absent. This contribution is given by the A 3
m=n=0 term in the above infinite sum, in the limit of v L b v N
h— oc. Explicitly, this is given by 0 5 4 6 8 10
kT\?2 % (a) Separation, kh
(23%%f>*=—%sxz(— (1+2ka8y) ——, (30)
e (kay)

0.05 T T T
where i, is the nondimensional potential on tlkeop sur- = N ]
face. In this knowledge, the term to be inserted into @6) = 0 F — === ]
is the difference, 7 N

& 005 F s/ -

3O=3Q-30, @) 3 - \\ wem s

g o ! ]

rather thars(9) itself [23]. g “LE R i e ]

We have solved the double layer problem for two spheres £ 015 F 0 \ ¥, = 75mV, y, = 75mYV g

in the manner outlined in Ref18] for the case of constant R TS .

but unequal surface potentials. The net stress contribution, r ]
Eq. (31), has been implemented in E(2) to give the de- L ——

formation to first order. Results of these calculations are dis- 0 1 2 3 4 5 6

cussed in the next section. (b) Separation, kh

FIG. 2. Deformation effects in a neutrally buoyant, charged drop
due to double layer forces as a function of minimum separation
between the spherical particle and timedeformeddrop. (a) dem-

For the common salt concentration of T, we expect, onstrates the typical response of the pressure excess inside the drop
on the basis of the parametbt, that the perturbation for- to double layer stressef) shows the corresponding values of the
mulation presented in this paper will hold valid for quite Shape deformation at the apex of the dr@pe point of closest
generous values of the drop radii. For instance, consider th@PProach All quantities shown are dimensionless. Parameters as-
case of air bubbles in water, the bubble radii can be as larg#/med in the calculations are as follows. Radij:=10nm, a,
as 30um before the theory can be expected to break down 100 hm; salt concentratiom,=10""M, giving a Debye length
For a salt concentration of I6M, the bubble radius limit °f ¥ ~=9.62nm; surface tension ig=72.8 mN/m appropriate for
increases to 3 mm. Naturally, with the possibility that in an a"'Wa“?; interface. These parameters Igad o a val.uM of

. . . =0.34x 10 “. Values of the surface potential for the different
practice either surface can have a potential larger kiadite cases are shown in the figure
(=25 mV at 25 °Q, the coefficients in the series expansion '
for K and{ may themselves be sufficiently large to slow the Alternately, the quantitie& ) and {*) can be judged for
convergence of the series or even cause it to diverge. Thigeir physical significance when multiplied By and com-
possibility is given consideration in the figures below wherepared with unity and 2, respective(gee Fig. 4
the coefficient& () and¢(*) are studied for their dependence It stands to reason that a repulsive double layer force will
on surface potentialgs;, and ¢,, radii and the separation lead to a flattening of the drop, while an attractive double
between the spherical particle and thedeformediuid drop  layer force will cause an elongation. This is of course borne
h. The reader should remain conscious of the fact that thessut in our results. For example, monotonically repulsive
results are nondimensional. Dimensionally meaningful quanforces are generated when the surface potentials are equal.
tities are the shape functiart (8) and the pressure excess, Figure 2 represents such cases for three different sets of sur-
written as face potentials. Even the largest set of potentials={ >
=75 mV) give no great cause for concern for convergence,
r*(6)=a,+a'""(6)M (328 and this is likely to stay the situation even at higher poten-
tials, although the nonlinear Poisson-Boltzmann should re-
and ally be implemented at that stage. A negative valug&f
implies a displacement of the surface below the spherical
p* — ﬁ+ Y KOM. (32b) form, giving rise to a pressure increase in the drop denoted
a & by a positive value oK Y. Qualitatively, both the pressure

NUMERICAL RESULTS FOR NEUTRALLY BUOYANT
DROPS
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(b) Separation, kh (b) Separation, kh
FIG. 3. As for Figs. 22) and Zb), but for increasing unequal FIG. 4. Deformation effects in a neutrally buoyant, charged drop

values of surface potentiéihdicated on the figurésNote that posi- ~ due to double layer forces as a function of minimum separation
tive pressure excesses imply an increase in pressure inside the drdj§tween the spherical particle and tivedeformectrop: consider-

negative values imply pressure decreases. Negépositive val-  ation of initial droplet size(a) shows pressure excess variation with
ues of¢™ imply displacement of the surface beldabove spheri- ~ Separation, while(b) shows the corresponding variation in apex
cal form. Quantities shown are dimensionless. deformation. By definition, relative pressure difference, and relative

deformation are dimensionless quantities. Parameters assumed in

and the deformation increase with increased surface potentifle calculations are as follows. Particle radais=1 um, surface
and decay exponentially with separation. Exponential decafotentials ;=4,=50mV, and salt concentration,=10"°M,
in deformation was also calculated by this author in an eard1Ving a Debye length ok~ *=96.2 nm; the surface tension i
lier publication[6]. In more general cases of unequal surface™ /28 MN/m, appropriate for an air-water interface. These param-
potentials, we expect to see more diverse behdviptFig. ~ Sters lead to values oi=0.841x107%, 0.17x10 7, and 0.34
3). If the potentials are of the same sign, then a repulsive 10 - for drop radiia; =2.5, 5, and 1Qum, respectively. These
double layer force is predicted at large separations, while aHalues of the drop radius, are shown in the figure.
attraction is predicted at short separations. If they are of op-
posite sign then a monotonic attraction is expected. Thehape and pressuré’M andK(*)M/2, with droplet size is
magnitudes and signs of the values of deformation and preshown in Fig. 4, for three droplet radii under purely repulsive
sure excess shown in Fig. 3 reflect the induced stresses double layer forces.
these respective circumstances. One particular point of interest is the effect of surface

Increasing the size of the drop and particle and decreasiniprces on the internal pressure induced by a neighboring par-
the salt concentration in such a way thkat; andxa, remain ticle. The assumption that the pressure excess remains con-
the same, e.g., decreasirgby an order of magnitudéde-  stant was made in recent calculations of the extent of defor-
creasing salt concentration by two orders of magnitiadel  mation by colloidal force§5—8]. It seems reasonable that
increasinga, and a, each by the corresponding order of any pressure change accompanying deformation will be neg-
magnitude, returns the values 6f*) and {*) shown in Fig. ligible for microscopic to macroscopic fluid drops. Since the
2. However, doing so leaved reduced by a factor of 10. surface forces act only over a length scale of the Debye
Thus, in dimensional termiEq. (32)] the same amount of lengthx %, one would not expect much variation in the drop
absolute deformation results in an absolute pressure excegelume and therefore pressure excess, when the droplet size
change which is down by a factor of 100, and a relativeis many orders of magnitude larger than'. This reasoning
change down by a factor of 10. Considering more generails now vindicated by the results in Fig. 4. As the figure also
circumstances, the variation in the relative difference inshows, KM/2 decreases monotonically with increasing
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size of the original drop;(YYM, on the other hand, increases, principle curvature of the sessile drop. To leading order only
all the while remaining quite small on the scale of the actuathe third term comes into a consideration of the effect of
drop (unity). That the dimensional magnitudes of deforma-surface forces. The governing equation for the perturbation is
tion are also quite modest on the scale of the separatioderived from Eq.(3) by substitution of Eqs(33) and (35),
between the bodies, is in line with the conditions of the pertaking heed of the fact that to leading ordgiis formally
turbation calculation. Naturally, assuming a lower energyproportional toM by construction, and should be identified
surface than the air-water interface=72 mN/m which is  with /(! of the previous section. The governing equation is
used as the basis for this data, will of course lead to greatehen

deformation. The same can be said of using a larger surface

' ' 1d ré'(r
potential. It has been shown elsewhé8 that outside the _1d §'( )2 | =—Ger) + K@+ 301).
restrictions of the perturbative regim#E& 1), which is the rdr\[1+(Zg)°]
trend indicated in Fig. 4, the predicted values of deformation (36)

are comparable to the surface separation, which then makes _ S )
it a matter of significance for the interpretation of direct sur-Although linear ing, it is difficult to solve Eq.(36) analyti-

face force experiments. cally in general, as the coefficients are functions of radius
and likely only to be known as numerical data. If homoge-
ACCOUNTING FOR THE INFLUENCE neous solutions were known, then a solution analogous to
OF DROP BUOYANCY Eg. (22) can be written down.

The problem could be simplified somewhat if surface
When the two immiscible fluids have different densities, forces were known only to act over a region near the apex
the isolated pinned drop will no longer assume a sphericalvhere the sessile drop has low curvature. Equaii) can
shape but will take either the form appropriate for a sessile othen be simplified by assuming(r)<1. This leads to an

hanging drop depending on the sign of the density differinhomogeneous Bessel equation
ence, under the influence of gravity. If a charged particle is

then brought into its vicinity the drop surface will diverge ., 1 )~ (0

from this sessile shape. Although more demanding, a pertur- g'(N+ - &(N=G&r)=-KY=25(r), @7
bation analysis can still be performed, and we outline the

details in this section without explicit calculations. describing the perturbation in this region, while, far from the

The equation of relevance is again E§), now with G source of external surface stress, where the curvature can be
#0. Since the drop in the absence of surface forces is nomnore significant, the perturbation must satisfy
spherical, no special advantage can be taken of a spherical

coordinate systenfalthough it can nevertheless be adopted, 1d ré'(r) | G 1) 38
if desired. Here we adopt a cylindrical coordinate system, Cordr \[1+(2p)3? §NFKE (39
once more assuming axisymmetry. The deformed drop shape
is given by These equations are supplemented, as before, by appropriate
boundary conditions of symmetry at the apex, and of a
z(r)=4(r)={o(r)+&(r), (33 pinned contact line at some set radiug,
where ¢, is a function ofr, describing the isolated sessile £(0)=0, &r,)=0, (39)

drop, andé represents the perturbation due to the action of
surface forces. The normal vector to the surface is given iflogether with matching conditions of value and slope of the

cylindrical coordinates by two solutions of Eqs(37) and (38) at some appropriate ra-
~ ~ diUS, I match
_Z=[ () +E (0]
A YR (34 E(Tmated) = En(Tmatcn)s & (Fvarcd) = &1 maten- (40)

(Subscripts | and Il denote the low and high curvature re-

The local curvature is then the divergence of this vector nor- ; T o
gions, respectively.The pressure variation is again given by

mal,

condition (23).
OM+ET) L[N +E ()] While the above mathematical model has relevance to
-V-n= ——roapt = — systems involvingsurface bounaharged drops with density
[1+ (Lot &)7] FVI+(5+€) different to the surrounding bulk phase, considerably more
” , numerical effort is involved in the calculations compared
_ do(r) + 1 &o(r) with the case of neutrally buoyant drop&or unattached
[1+(L5)%1%2 v V1+(2h)? drops, the shapes are much more likely to be spherical as the

drops move through the continuous phager consideration
ré'(r) of the AFM experiments on interactions between a colloidal
[1+(£5)%1%° particle and a bubble or an oil droplg2—4,19,20Q, or our
own surface force experiments involving mercury drfpk
The last expression is correct to first ordegjrand assumes if one is to follow the above scheme one must first determine
it is small compared with the overall length scale of the dropthe original sessile drop shape bymerica) integration of
The first two terms are familiar as expressions for the twd_aplace’s equation, obtain the numerical solution of &6)

1d

o +0(&%). (35)
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[or Egs.(37) and (38)], and subsequently evaluate the pres-surface and solution conditions. The mathematical model,
sure constant (1. All of these steps are performed with the covering the more general situation of a buoyant drop, again
proviso that one has a quantitative description of the doubl@ppears to be new to the literature, and may be useful to
layer stress distribution over the original sessile surface. Buteaders interested in either equilibrium or dynamic problems
again, since the sessile drop shape is likely to be known onlinvolving deformable drops in other circumstances. It was
numerically, the best scenarig@e., invoking the Derjaguin not explicitly studied here.
approximation will involve numerical double layer stress  While the perturbation analysis and numerical results pro-
data, which then enforces further numerical integration. Forided are correct, we remark, finally, that numerical inaccu-
this reason we do not see any advantage of this method, gacies do arise for certain combinations of parameters other
this time, over a full and direct numerical integration of than those used to produce the figures herein. The difficulties
modified Laplace equation when both buoyancy and surfacare associated with the fact that in this problem thereace
forces are present, as we have performed in the [GagL clearly defined length scales, the Debye screening length
We therefore make no further use of the analysis of thisc !, and the size of the drop=a,. As we have already
section. pointed out, double layer forces act on the length scale of the
former, while shape changes are based on the droplet size.
SUMMARY AND FINAL REMARKS This suggests that, when these length scales differ consider-
) ) ~ ably(beyond the values assumed hesmn analysis based on
~ We presented a linear perturbation study of fluid-liquidthe method of matched asymptotic expansions would be
interfacial deformation due to electrical double Iaygr forcesmore appropriate than the straightforward expansion method
of drops. The problem of a neutrally buoyant drop pinned ompdopted here. Although it will certainly be valuable to pursue
a solid surface interacting with a spherical particle was for4 matched asymptotic analysis valid for very large drops, the
mulated in detail. While the resultant governing equation deresylts given here have their place in colloidal situations.
scribing axisymmetric departures from spherical form, Eg.
(16), has appeared in the literature previodd$,21,23, the
equations for more generql_deformatipns, Ead) and(15), _ ACKNOWLEDGMENTS
do not seem to be as familiar in the literature. An analytical
solution to the axisymmetric problem was given, and subse- | am grateful to the Australian Research Council for fi-
quently investigated numerically for explicit dependences omancial support.

[1] K. L. Sutherland and I. W. Warlgrinciples of Flotation(Aus- [14] G. M. Bell, S. Levine, and L. N. McCartney, J. Colloid Inter-

tralasian Institute of Mining and Metallurgy, Melbourne, face Sci.33, 335(1970.

1955. [15] A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci.
[2] M. L. Fielden, R. A. Hayes, and J. Ralston, Langmiér 3721 93, 95 (1983.

(1996. [16] J. W. Krozel and D. A. Saville, J. Colloid Interface S&b0,

[3] W. A. Ducker, Zh.-H. Xu, and J. N. Israelachvili, Langmuir

365 (1992.

[4] ]|:|(.),-J:%287u9t§,1??2.0”0id Interface Sci66 109 (1994). [17] S. L. Carnie and D. Y. C. Chan, J. Colloid Interface 45,
[5]R. G. Homn, D. J. Bachmann, J. N. Connor, and S. J. _ 297(1993.

Miklavcic, J. Phys. Condens. Mattéy 9483(1996. [18] S. L. Carnie, D. Y. C. Chan, and J. S. Gunning, LangmiGir
[6] S. J. Miklavcic, R. G. Horn, and D. J. Bachmann, J. Phys. 2993(1994).

Chem.99, 16357(1995. [19] S. Basu and M. M. Sharma, J. Colloid Interface 3@1, 443
[7]1 D. J. Bachmann and S. J. Miklavcic, Langmduip, 4197 (1996.

(1996. [20] P. Mulvaney, J. M. Perera, S. Biggs, F. Grieser, and G. W.
[8] S. J. Miklavcic, Phys. Rev. B4, 6551(1996. Stevens, J. Colloid Interface Sdi83 614 (1996.
[9] N. D. Denkov, D. N. Petsev, and K. D. Danov, Phys. Rev. [21] M. Strani and F. Sabetta, J. Fluid Med#1, 233 (1984.

Lett. 71, 3226(1993. [22] M. Strani and F. Sabetta, J. Fluid Medt89, 397 (1988.

[10] K. D. Danov, D. N. Petsev, N. D. Denkov, and R. Borwanker,
J. Chem. Phys99, 7179(1993.
[11] N. D. Denkov, D. N. Petsev, and K. D. Danov, J. Colloid

[23] In Ref.[18] no account of the double layer stress on an iso-
lated sphere was required, as the authors of that paper were

Interface Sci176, 189(1995: 176 201 (1995. interested in the force between the two objects along the direc-
[12] S. R. Dungan and T. A. Hatton, J. Colloid Interface 34, tion of the line joining them, the direction. Because of sym-

200(1994. metry, thez component of this stress integrated over the sur-
[13] O. A. Basaran and L. E. Scriven, J. Colloid Interface 340, face is zero.

10(1990.



